A collisional drift wave description of plasma edge turbulence

Masahiro Wakatani

Plasma Physics Laboratory, Kyoto University, Uji 611, Japan

Akira Hasegawa
Bell Laboratories, Murray Hill, New Jersey 07974

(Received 25 August 1983; accepted 5 December 1983)

Model mode-coupling equations for the resistive drift wave instability are numerically solved for
realistic parameters found in tokamak edge plasmas. The Bohm diffusion is found to result if the
parallel wavenumber is chosen to maximize the growth rate for a given value of the perpendicular
wavenumber. The saturated turbulence energy has a broad frequency spectrum with a large

fluctuation level proportional to « (

= p,/L,, the normalized inverse scale length of the density

gradient) and a wavenumber spectrum of the two-dimensional Kolmogorov—Kraichnan type,

~k 73,

I. INTRODUCTION

A number of experiments clearly indicates that a toka-
mak-type plasma with a strong magnetic field exhibits a
large levei of density fluctuations which increase near the
edge. ! The observed frequency spectra are usually broader
than the drift-wave frequency, revealing their strongly tut-
bulent nature.'™

Recognizing that the classic weak-turbulence theory
fails to explain these results, Fyfe and Montgomery® as well
as Hasegawa, Kodama, and Maclennan® have presented the-
ories of strongly turbulent drift waves based on the model
equation derived by Hasegawa and Mima.” It was found that
the wavenumber spectrum rotates from that peaked in the
azimuthal direction to that peaked in the radial direction®
and that the spectrum obeys the two-dimensional Kolmo-
gorov-Kraichnan law>® (~k —3).

The importance of mode couplings in such strongly tur-
bulent plasmas are now being recognized by many authors.
In particular, Waltz® as well as Terry and Horton'® have
made extensive numerical studies of the spectrum evolution
based on model mode-coupling equations and have success-
fully demonstrated that a broad frequency spectrum in fact
originates from these models.

To describe the high level of observed turbulence near
the plasma edge, Hasegawa and Wakatani have derived
model mode-coupling equations based on collisional drift
waves and numerically solved them. The wavenumber spec-
trum of the turbulence is found to exhibit an inverse cascade
at large wavenumbers and forms an isotropic, two-dimen-
sional Kolmogorov-Kraichnan spectrum, k£ —>. The turbu-
lence has a broad frequency spectrum with a large saturation
level and produces a Bohm-type particle diffusion.

In this paper, these calculations are extended to include
the realistic parameters in the density gradient, viscosity and
the ion Landau damping in tokamak edge plasmas. The
mode-coupling equations include resistivity which is respon-
sible for the instability and the viscosity which is responsible
for the dissipation. The saturation of the instability is found
to take place only when both the viscosity and the modes
with both &, >0 and &, <0 are included, where k, is the
wavenumber in the p direction. This means that the satura-
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tion can occur by the excitation of waves in the direction of
the ion diamagnetic drift.

When the parameter C,=k 2v}. /v, w,; is chosen such
that it maximizes the growth rate of the instability for the
particular perpendicular wavenumber of the mode of the
perturbation, both the particle flux I” and the saturated fluc-
tuation energy E,,, (rather than the density fluctuation) are
found to be proportional to «, where & is the scale length of
the density gradient normalized by p,. From this particle
flux, a Bohm-type diffusion coefficient is obtained. The coef-
ficient obtained in the present calculation using parameters
close to the real experiment is found to be smaller than the
previous model calculation with the fairly large viscosity and

. For other choices of C,, e.g., C; = const. or C, <k, these
scahngs were not found. The interesting point is that, when
C, is made large for the long-wavelength region, the density
fluctuation excited by the inverse cascade process follows
the Boltzmann distribution and the resultant particle flux
becomes fairly small.

The particle flux is determined by the phase difference
between the density and the potential fluctuations which is
proportional to «. The energy conservation relation for the
model equations gives the estimate dE /9t « kI « 2. The sat-
uration time found from the numerical calculations is in-
versely proportional to k. This explains our finding, E,,, o .

When electron temperature increases at the edge re-
gion, the parameter C; becomes large since
C, « v} /v, « T Y% In the tokamak discharge with a divertor
configuration, the electron temperature near the edge can be
made to increase due to the decrease of particle recycling in
the scrape-off region. Our numerical result which shows that
the particle flux decreases for a larger value of C, in the long-
wavelength region supports the evidence of better confine-
ment in the H-mode discharges recently found in the
ASDEX tokamak.'?

Il. MODEL MODE-COUPLING EQUATIONS

We consider an edge plasma where the temperature is
sufficiently low such that the electron mean free path is
shorter than gR, where g is the safety factor and R is the
major radius. Then the electron Landau damping becomes
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less important that the collisional damping, yet we assume
that the parallel heat conducivity is sufficiently large that the
electrons may be treated as an isothermal fluid along the
direction of the magnetic field. These conditions are met if
w/v, €vy. k2/v2 SO (1), where w is the typical frequency of
the turbulence, v,; is electron collision frequency, vy, is the
thermal speed, and k, ~1/gR. The resulting mode-coupling
equations significantly simplify the earlier attempt for resis-
tive drift wave turbulence.'® Furthermore, we assume that
the electron temperature gradient is much smaller than the
density gradient which is supported by the experimental evi-
dence.

We treat ions as a two-dimensional warm fluid with
ordering similar to that of the Hasegawa—Mima equations,’
except for the case where the ion Landau damping is includ-
ed. The equations for the ion vorticity VX v = (V¢ /B,)Z is
then given by

2 2
o) e () g
dt\ Byw,; en, 0z B,

where J, is the perturbed current density in the 2 direction, ¢
is the electrostatic potential, and u is the kinematic ion vis-
cosity coefficient (u = 3T;v;;/10m,»?). The current density
J, consists of the electron J¢ and ion J, components. We
consider that the major contribution of the ion current den-
sity is the dissipation of the vorticity through the ion Landau
damping which occurs when the drift wave frequency o, (k,)
is comparable to k,v;, where k,~1/gR and vy, is the ion
thermal speed. Then

1 aJ : ¢ vTx
—_ k, , if w, k) )J~——,
en, 0z el >_— T, (k)= qR
=0, if co, tk\y>vr/qR. {2)
The convective derivative is
4 = 9 _ W_XZ_.V, (3)
dt ot B,

where 2 is the unit vector in the direction of the magnetic
field. The continuity equation relates the number density
n(= no + n,) to the electron current density

14d,.

Lo+ m) =2, @
where ny(x) are the equilibrium density which varies in the x
direction. The assumption of the isothermal electron fluid
relates J ¢ to n, and ¢ through the electron equation of mo-
tion in the 2 direction,

r=cd(n_22) )
en dz\n, T,

By climinating J; from Egs. (4) and (5) we can construct
coupled nonlinear equations for ¢ and #,. If we use the nor-
malization e¢ /T, =4, n,/ny=n, vt =t and x/p,=x, the
coupled equations become

(% _vs xf-V)v2¢ — TG —n+CVB+Ch (6
and

(& -ve X2V Jn + g = C,f — ) ™
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where
o Te (92
C=~ <, o=t
e‘ngnw,; 9z PrO,
w, T, U
C=—2_1 ifo,=— (8)
a)ci Te qR

=0 otherwise.

The conservation laws for the energy E and the potential
enstrophy U can be constructed from Egs. (6) and {7),

14

\Z33 14
E (n® + (V4 )]
)
=—FE(t
ot )
2
- - C;J(i?l - i;ﬁ) av— C2J(V2¢ Pav
Jz Oz
nzxx)}Vg dv, &)
and
1 4
— —|(V*¢ —n)?dV
E (V¢ —n)
a
=—Ult
£ ty
= — CZJ-(n — V2 )V dV — J.n(?.XK)-V;z‘: dv. (10)
Here k{ = — p,V In n,>0) shows the normalized density

gradient vector, C; = C,/k 2, and C, is neglected for simpli-
city.

Near the plasma edge, we assume that the density gradi-
ent has a constant value which is equivalent to an exponen-
tial density profile. Then Egs. (6) and (7) become uniform in
space. These equations show that the nonlinear evolution of
the resistive drift wave is completely characterized by only
three parameters kps, C, and C,, when the ion Landau
damping term C, is neglected. Under the same assumption
the particle flux in the x direction is given by

r=— <n—%> - _ f nEXRIVS AV, (11)

where k denotes the unit vector of the density gradient. We
note that the unnormalized particle flux is given by
I' = nye, I By use of Egs. (9) to (11), we can find the relations

geo=—cif(G -5

-G, f (V2% ) dV + «T,
and (12)

iU(r) = — sz(n — V24 V4 dV + kT

Here « is the magnitude of k. The relation (12) shows that the
enstrophy does not saturateif C;, = Oand I'#0(orn#4¢).In
the numerical calculations, we included viscosity to ensure
the saturation. We note that at saturation, the particle flux is
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given by
f=&f(n _ V24|V aV
K
’ 2
- (i”— - %) av+ —C_Lf(vzqs pav.  (13)
K dz 9z K

Thus in the presence of C, and C,, a stationary particle flux
I'is produced while both the energy and enstrophy are satu-
rated.

The dispersion relation for the resistive drift wave'* is
obtained from Eqgs. (6) and (7)

@* + iolb + k*C)) — ibo, — [k*/(1+ k?)]bC, =0,
where

b=C\l +k/k? o, =kyk/(1+Kk?).

If C, is ignored the solution is

@ =4[ — ib + ib(1 — 4iw, /b)) (14)
If b>w* is assumed,
o~o, + l'a)z*/b. (15)

The maximum growth rate is found for b~4w*. In
terms of C,, the condition of the maximum growth rate be-
comes

C, =4k *k k/(1 + k2. (16)
For a fixed value of resistivity, C, is proportional to & 2. Since
the plasma can choose any parallel wavenumbers, excita-
tions of waves with k, which satisfies Eq. (16) for a given

value of k, are most likely to occur, provided that the plasma
remains collisional for this value of &, .

lll. NUMERICAL CALCULATIONS

By assuming that the density gradient has a constant
value (which is equivalent to an exponential density profile),
Egs. (6) and (7) become uniform in space. This means we can
solve these equations with a periodic boundary condition.
Thus we adopt the Fourier series expansion with the wave-
number vector k = (lk,,mk ), where / and m are integers
and k, , and k,, ;, are the minimum wavenumbers in the x and
the y directions, respectively. The parallel wavenumber is
implicitly included in C,.

Then, the Egs. (6) and (7) can be written as

anf 1 C . C S 35 r Lo ”ny s
3t =k‘ ; k7(¢k’nk' _¢k‘nk”)(kxky _kxky)
+ k=

+ kxp s — Cyng — ¢ %), (17)

on 1 s ¢ c,s
= Z —Bwnm: +oum- Nk k) —kiky)
at k’+k"=k2
—kkpi — Ci(n§ — 4%), (18)
a¢f— 1 C 4 C S48 Iz "l s
= 3 EeC —BLeLNkIK) —kik})
at K4k =k 2
k;‘l2+knl nf_¢f
v O~ Gk TR
x y x y
—GIUkL +k3)]o%, (19)
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1
= Y —pvdw +ocdilkik) —klk;)
at K+ =k2
KRk =48
k2+k2 o kI4k?

—Cylk L +kJpy — G[V/k: +k3)]4x,  (20)

where the superscripts .S and C show a sine series and a co-
sine series, respectively.

We solved Egs. (17) and (20) numerically to study the
nature of the turbulence and the resultant particle diffusion
for various values of k and C,. The parameter C, is chosen in
several ways as will be shown later. The parameter C; which
characterizes the ion Landau damping is included for one
series of the calculations.

The number of modes used in the calculation is typical-
ly 24X 24 and k, ;, = k,, = 27/32. The integration time step
is taken to be 1/1.25 ~ 1/20 which is chosen according to the
linear growth rate (or according to the value of ). The nu-
merical error is checked with the energy conservation law,
Eq. (9) and is kept within 5%.

The first problem is to study the saturation of the linear-
ly unstable drift waves. Here we chose C, according to the
relation (16). When we start from an initial condition of
n, =@, and @, = 0.005/(1 + k?)'/? for all perturbations,
the saturation in the total energy E (¢} is found to appear at
t=~150(see Fig. 1). After the saturation, E (¢ ) is found to oscil-
late around the saturation level. In order to examine a satu-
ration mechanism, we limited the perturbation to k, >0
throughout a calculation. In this case the total energy did not
saturate (see Fig. 2). As the third case, k, >0 was imposed
only to the initial pertubations, but k, <0 allowed later. In
this case the saturation was found to occur as shown in

Energy of Small kx Drift Waves
(%=-03927, C2=0.005)

0r
s Etotal
- //,__.-—’_5‘- e ——
E /
- /
/
//
tE
i /a4
/
L /
/
// 1,4 (13) (1,4)
g , (1,4) (1-5) .
/
ot/
1,4)
13
. L 0, -4,
100 150 200 250 300
T (Time)

FIG. 1. Temporal behaviors of the total energy, Eq. (9), and the energy of
different Fourier modes (,, k, ). The saturation is clearly visible.
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Energy of Small k Drift Waves
WOr  (§=-0.3927, C2=0005, Without ky<0) .

-

T T

A

0.0

T (Time)

FIG. 2. Temporal behaviors of the total energy and the energy of different
Fourier modes in which only modes with k, > 0 are allowed. The saturation
is not observed in this case.

Fig. 3. Therefore it is clear that an existence of modes with
k, <0 (the modes which propagate in the direction of the ion
diamagnetic drift) is essential for the saturation.

Figure 4 shows the dependence of the saturated energy

Energy of Small k« Drift Waves
(X=-0.3927 C2=0.005, n=¢=0 for ky <0 at T=0)

H - e ——

Etotal _—~=""

-

L/
[oR] /
/

oo

T (Time)

FIG. 3. Temporal behaviors of the total energy and the energy of different
Fourier modes in which modes with k, <0 are absent only at 7= 0. The

saturation is observed in this case.
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FIG. 4. Dependency of the saturation energy on « for a fixed large value of
C,. Thecircles (dots) are the results with (without) the ion Landau damping.

E,,. onk. E,,, is found to increase linearly with «, but for the
small x regime the resistive drift wave instability is sup-
pressed by the assumed viscosity as is seen in the linear dis-
persion relation (13) and E,,, goes to zero. Therefore the
empirical relation E,,, ~6x (1 + 140 C,) and I'~« (1 + 60
X C,) presented in our earlier work'! is found not applicable
to the small « regime.

Here we used a smaller viscosity parameter C, to study
the saturation of the unstable resistive drift waves in the
small « regime. For example, the typical parameter of the
Caltech Research Tokamak™!! is k~0.02 and C,~(1~5)
X 10~* depending on the ion temperature and the effective
charge Z.;. The results for C, = 5X 10~* are shown in Fig.
5. There exists still a linear relation between E.,, and x. How-
ever, the coefficient became smaller. Figure 5 gives E,,,
~1.3k for this case. Compared to the previous estimation,
E,,, ~6x, the saturation level decreases by about factor 5.

It has been shown'! that the wavenumber spectrum of
the energy is seen to form an inverse cascade in the y direc-
tion from a peaked spectrum and to cascade to a large wave-
number in the x direction, a tendency qualitatively similar to

o4 § C2=0.01
!
I
Esat | ]
’I
03[ ’ /
; ,
]
I ’
/ /cz-2x1o3
oz} ,I 7
! /
,‘ /
Ly
orr {’/ Cp=5x10"
I /7
/
0 M - . L .
0 002 004 006 008 0.0 012

K

FIG. 5. Dependency of the saturation energy on « for a fixed small value of
C,. For a sufficiently small value of C,, E,,, « k is observed to a small (realis-

tic) value of k.
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Energy Spectrum

1.0 [ T SCTr T T T T ]
E
ol -
- E(k:
oo ® =0.3927 Elky) e
- C2 =0.005 Y -
- T =240 ]
1 [ ] [ ] L 1 1 1
[+R] 1 10
kx or ky

FIG. 6. Wavenumber dependency of the energy spectral. E (k, ) and E (k, )
are the energy spectra integrated over &, and k., respectively.

that found earlier for collisionless drift-wave turbulence.® A
typical result of the saturated wavenumber spectrum is
shown in Fig. 6. The wavenumber spectrum at large & is very
close to the two-dimensional Kolmogorov-Kraichnan spec-
trum, E, ~k ~3. This spectrum corresponds to the inertial
range of enstrophy, thus the energy does not cascade in this
range.

The density fluctuation and the potential fluctuation
corresponding to Fig. 1 is shown in the real space (x-y space)
in Fig. 7. Deviation from the Boltzman distribution, n = ¢,

FIG. 7. The potential contour (¢ )
and number density contour (V)
in x-y plane.
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F Cp=5x1074
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FIG. 8. The frequency spectrum of the number density fluctuation for the
fixed wavenumber (3,3).

is clearly seen but the phase angle between n and ¢ is fairly
small.

The frequency spectrum of the number density fluctu-
ation for a fixed value of k = kg, |1y, |, is shown in Fig. 8 for
ko, = (0.59, 0.59j. It is obtained by applying the fast Fourier
transform to the local density fluctuation over a time inter-
val after the saturation. Here o} is the drift-wave frequency
k,x/(1 + k?) for k = ko. The parameters of x = 0.025 and
C, = 5% 10~* are close to the Caltech Research Tokamak
experiment.!! The frequency spectrum for a larger value of
k was also studied and found to be broader than Fig. 8. The
qualitative features of the broad spectrum peaked near
o S, agree well with the experimental observations.'

A spatially uniform particle flux in the x direction,
I'(t)= (nv, ), appears, since k is taken to be constant. I" (¢ )

008 r
Il
Pt / C2=0.00
/
/
0.06 /
/
/
L /
!
/I G, =2X13-3
0041 / o
/ Pig
I ¢ s
/ d
002 I, -
: i 7
Iy C2=5x10"*
it 1’ "

0 1 ' 1 ]
[] 002 004 006 008 010 012

x
FIG. 9. Dependency of the normalized particle flux T across the magnetic
field on . For a sufficiently small value of C,, "= x is observed to a small
(realistic) value of «.
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grows in time and approaches to a stationary level as the
instability saturates. The stationary particle flux I is also
found to increase linearly with « as shown in Fig. 9. For a
large viscosity case, the turbulent particle flux also disap-
pears in the small x regime similar to E,,, in Fig. 3. For a
small viscosity case, C, = X 1074,

F~02¢ (21)

is found. This flux corresponds to a diffusion coefficient D
given by

D = Iy/kny = 0.2T, /eB,, (22)

which is the Bohm diffusion with a coefficient 1/5. The abso-
lute value of the particle flux is smaller than the previous
estimation’’ obtained for a larger value of k.

Now we discuss the scaling for the saturated energy,
E,,, <. Inthe energy cvonservation relation (11), the domi-
nant contribution to the energy growth in the growing phase
of the instability is attributed to the last term of the right-
hand side. Therefore, approximately

9E iF (23)
at
holds in this phase. The saturated energy is then estimated
from

sar

E,~x| Iadt (24)
0

We have checked the saturation time #,,, from the numerical

results and found that it is inversely proportional to « as is

seen from Fig. 10. Therefore, the saturation level is propor-

tional to «, provided I' « .

Next we discuss the choice of C, and the relevant scal-
ing for E,,, and I". When the plasma becomes collisionless,
v, Svr./qR, C, becomes large, since C, is inversely propor-
tional to resistivity #. To study this effect we put C, = 1.0 for
all perturbations which is larger than the value given by the
relation {16). This choice corresponds to a fixed parallel
wavenumber k,. For « £0.32 with C, = 0.025, the resistive
drift wave instability is suppressed by the last term which is
proportional to C,C, of the linear dispersion relation (13).
The interesting result found in the numerical calculations is
that when C, is kept to be large in the long wavelength re-
gime, where the wave energy concentrates by the inverse
cascade (see Fig. 11), the density and the potential fluctu-
ations followed closely to the Boltzman distribution. Be-
cause of this the particle transport became very small. On the
contrary, the choice of (16) gives a smaller value of C, in the
long wavelength regime, since C, < k zky k, and the deviation
from the Boltzman distribution appears as was seen in Fig. 7.

C2=0.01
1000
800
600
tsat
400 FIG. 10. The time needed for saturation
t.. as a function of «.
200
0 L . | i i
041 02 04 060810
x
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FIG. 11. The potential {¢) and
number density (N } contour for a
case with a large value of C,.

As an alternative choice, we also tried C, = 4«. In this
case we could not find a simple relation between E,, and K or
I and « as shown in Fig. 12. In Fig. 12, the dotted line is the
same line as shown in Fig. 4. For the case of C, = 4k,
C, = 0.01, and x = 0.3927, the saturated wave energy spec-
trum is shown in Fig. 13. The wave energy spectrum E (k)
shows a weak deviation from & , * spectrum.

These results suggest that the saturation levels of £ and
I" depend on the choice of the parameter C,, and there exists
a general tendency that the particle transport decreases for a
larger value of C, in the long wavelength regime. Only for
the choice of C, such that the growth rate is maximized the
Bohm diffusion appears.

Finally we present the effect of the ion Landau damping
term [the third term of the right-hand side of Eq. (6}]. Since
the ion Landau damping appears only for a low-frequency
mode such that v, /gR~o,, , we added the C; term only to
the mode with the smallest |, |. In this case the inverse cas-
cade process in the small k, direction is changed, since the

or , Gi%
Vi C2=0A01
8 r . //
Esat /
6 r //
//
o " -
/
//
r /
/
/
) Vi 1 n " ‘ '
0 02 04 06 08 10
x

FIG. 12. Dependency of the saturation energy on « for C, = 4x.
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Energy Spectrum
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FIG. 13. The wavenumber dependency of the energy spectra for C; = 4x.

energy accumulation in the smallest |k, | modes is limited by
the ion Landau damping. The white circles in Fig. 4 show the
numerical results for C, = 0.01«. The saturated wave energy
increases as compared with that of C; = 0. The fact that the
saturation level increases is easily understood from the ener-
gy conservation law in which Cj term is included. It is clear
from Fig. 4 that the deviation between the cases with and
without the Landau damping becomes increasingly small for
a smaller value of «. This finding indicates that the effect of
the ion Landau damping on the particle transport and satu-
rated energy level is negligible for k¥ % 0.1.

IV. SUMMARY AND COMPARISON WITH
EXPERIMENTS

To compare our results with experimental results, let us
take the example of the Caltech Research Tokamak'
(R =45 cm, a=15 cm, By = 4kG, Ty, ~25 €V, Ny,
~10'"2 ¢cm~?, the plasma is marginally collisional), then
¢, = 5% 10°% cm/sec, ps =0.13 cm. Our numerical results
for the small viscosity cases given from Fig. 5 and 9

E,. ~13k,
and

I'~0.2«.

Hence if we choose k~1/3 cm™! near the edge, k~0.04.
This gives the particle flux I" = knycs~5X10'® cm~2
sec”!, while the saturation energy E,,~0.07. Since
1 2 |n, |*isfound tobe 75% of E,,, this gives |n,/no|~0.22.
Both of these values are in fact in good agreement with the
observation.?

The major difference of the present result from the oth-
er theory of the edge turbulence’’ exists in the fact that the
present turbulence gives [n,/n,|=~|e¢ /T, |, while the other
theory based on the magnetohydrodynamic rippling mode
gives [eg /T, |» |n,/n,|."* The experimental result of the Cal
Tech Tokamak favors the present result in this respect. In
addition, the present result does not depend on the presence

617 Phys. Fluids, Vol. 27, No. 3, March 1984

of a plasma current (while that for the rippling modes does).
Thus the study of edge turbulence in stellerators or helio-
trons is important to clarify the difference. In fact the pre-
liminary results of density fluctuation measurements in an
edge region of the Heliotron E at Kyoto University reveal a
large level of density fluctuations of ~20% ~ 30%.

The most important discovery in the present analysis is
that both the particle flux and the saturation energy scale
like «, rather than &2 as often believed for collisionless drift
wave turbulence.!* This scaling depends crucially on the
choice of the parameter C, (~k 2/7). The obtained results
originate when C, is chosen to be proportional to the linear
drift wave frequency for each value of the perpendicular
wavenumber such that the growth rate is maximized. Such a
choice can be made possible if the plasma is collisional. De-
pendence of the saturation energy on the quantity « leads to
the relative density fluctuation #,/n, being proportional to

. This gives the density fluctuation on the order of 10% in
contrast to the case when n,/n,~k, where the density fluctu-
ation becomes on the order of 1%. If the collisionless drift
wave instability gives n,/n,~« as suggested by many auth-
ors, the present result explains why n,/n, increases toward
the edge. With respect to the dependence of I" on C,, it
should be noted that the tendency of increasing I" as C, is
increased occurs only in a limited range of C,/k. If C,3x, I"
decreases as C, is increased, while if C,<x, I increases as C,
is decreased. Hence the relation I” « « is valid in this limited
range of C,. In addition, as C, is reduced the mesh size (k ... )
should be reduced accordingly to obtain reliable results.

The fact that the particle flux I" is proportional to « is
responsible to the generation of the Bohm diffusion. This
result is also the consequence of the choice of k 2 to maximize
the growth rate. Bohm diffusion is in fact observed in many
experiments at tokamak edges.>'® Bohm diffusion near the
edge, however, is not so dangerous because D « T4, , where
T ogge is generally small.

Since the Bohm diffusion is a maximum possible diffu-
sion, one can imagine that the particle transport in the bulk
region is controlled by the Bohm diffusion near the edge.
Since particle flux obtained depends only on the local param-
eter near the edge (which maybe controlled by the wall con-
ditions rather than the bulk parameters), I" = const gives the
particle confinement time to be proportional to the number
density of the bulk plasma, a scaling somewhat similar to the
Alcator scaling.

Finally we note that if in fact I" « k in a collisional plas-
ma and I" < x2 in a collisionless plasma, the recently discov-
ered H-mode'? in a tokamak plasma may be explained by an
improved plasma confinement near the edge when the edge
becomes collisionless due to the increased temperature in the
H-mode operation.
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